Ionic Motion of Phenethylammonium Ion in $[C_6H_5CH_2CH_2NH_3]_2PbX_4$ (X = Cl, Br, I) as Studied by ¹H NMR

Takahiro Ueda, Mariko Omo*, Katsuyuki Shimizu*, Hiroshi Ohki*, and Tsutomu Okuda*

Department of Physical Chemistry, National Institute of Materials and Chemical Research, Tsukuba, Ibaraki 305, Japan

Tsukuba, Ibaraki 305, Japan

* Department of Chemistry, Faculty of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739, Japan

Z. Naturforsch. 52a, 502-508 (1997); received April 8, 1997

The temperature dependences at 110 to 400 K of the $^1\mathrm{H}$ spin-lattice relaxation time (T_1) of the phenethylammonium ion in phenethylammonium lead (II) halides, $[C_6\mathrm{H}_5\mathrm{CH}_2\mathrm{CH}_2\mathrm{NH}_3]_2\mathrm{PbX}_4$ (X=Cl, Br, I), revealed that this ion shows reorientation of the NH₃ moiety around the three-fold axis and torsional motion of the alkyl chain (CH₂CH₂). Below room temperature, the chloride and the bromide yielded two minima of $^1\mathrm{H}$ T_1 originating from NH₃ reorientation, whereas the iodide yielded only one minimum. These findings indicate that there are two kinds of NH₃ sites in the chloride and bromide but only one in the iodide. The T_1 minimum observed below room temperature gave similar activation energies of the NH₃ reorientation, E_a = 15.7, 15.1 and 15.5 kJ mol⁻¹ for the chloride, bromide and iodide, respectively, suggesting that the corresponding NH₃ groups are located at similar environments. Above room temperature, the T_1 minimum in the chloride and bromide gave larger E_a values of the NH₃ reorientation: E_a = 23.6 and 20.2 kJ mol⁻¹ for the chloride and bromide, respectively. These findings suggest that the NH₃ groups form stronger hydrogen bonding with halogen atoms (N-H ... X). Furthermore, the amplitude of the CH₂CH₂ motion is discussed, using the two sites jump model. The activation energies for the CH₂CH₂ motion in these compounds are almost equal (E_a = 29.1, 30.0 and 28.2 kJ mol⁻¹ for the chloride, bromide and iodide, respectively), but that the torsional angles become larger in the order iodide \leq bromide \leq chloride.

Key words: NMR, Phenethylammonium lead (II) halides, Molecular motion, Disorder.

1. Introduction

It is known that phenethylammonium lead (II) halides, $[C_6H_5CH_2CH_2NH_3]_2PbX_4$ (X=Cl, Br, I) have a two-dimensional layered perovskite-type structure [1]. At about 200 K the iodide (hereafter abbreviated as Ph-PbI₄) is monoclinic, space group C2/m with the lattice parameters a = 3.2508 nm, b =0.6131 nm, c = 0.6185 nm and $\beta = 93.80^{\circ}$. The inorganic layer is built of corner-sharing PbI6 octahedra and the organic layer of phenethylammonium ions (C₆H₅CH₂CH₂NH₃), the phenyl groups facing each other. Each layer is stacking alternatively. The bromide and the chloride (hereafter abbreviated as Ph-PbBr4 and Ph-PbCl₄, respectively) are isomorphous with the iodide [1]. These three halides are interesting because of their optical and electronic properties originating from the natural multi-quantum well structure [2, 3] and because of phenomena closely related to the dynamical behavior of the phenethylammonium ion, such as phase transitions and glass formation [4, 5].

Reprint requests to Dr. T. Ueda. Fax: +81 298 54 45 24.

In our previous work of 13 C CP/MAS NMR on $[C_6H_5CH_2CH_2NH_3]_2[CH_3NH_3]_{n-1}Pb_nI_{3n+1}(n=1,2)$, we found that the phenyl groups undergo a 180° flip motion around the two-fold axis, of which the activation energy and the pre-exponential factor are 25 kJ mol^{-1} and $8 \times 10^{-10} \text{ s}$ for the iodide with n=1, and 26 kJ mol^{-1} and $6 \times 10^{-10} \text{ s}$ for the iodide with n=2 [6]. However, the thermal motion of the NH₃ and CH₂CH₂ groups have not yet been clarified.

In the present work, the lattice parameters of Ph-PbX₄ were determined using X-ray powder diffraction, the temperature dependence of the ¹H spin-lattice relaxation times (T_1) for $[C_6H_5CH_2CH_2NH_3]_2PbX_4$ (X = Cl, Br, I) were measured and the motional modes of phenethylammonium ion in Ph-PbX₄ are discussed.

2. Experimental

Sample Preparation

Ph-PbCl₄ was synthesized by the method used for preparing $[C_6H_5NH_3]_2CuCl_4$ [7]. PbCl₂ and phenethylamine $(C_6H_5CH_2CH_2NH_3)$ were dissolved in

0932-0784 / 97 / 0600-0502 \$ 06.00 © – Verlag der Zeitschrift für Naturforschung, D-72027 Tübingen

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

concentrated hydrochloric acid in the molar ratio 1:6. The mixture was heated and completely dissolved. Thin white quadratic plates of Ph-PbCl₄ were grown by cooling the solution. The crystals were dried at ca. 60 °C under reduced pressure. Crystals of Ph-PbBr₄ were obtained in the same way from concentrated hydrobromic acid. The samples of Ph-PbI₄ were obtained on described in [6]. The samples were sealed into glass ampoules with He heat exchange gas.

X-Ray Powder Diffraction Measurement

X-ray powder diffraction patterns were measured using a Rigaku RAD-B X-ray diffractometer at room temperature. The reflection data were collected over the reflection angle $10^{\circ} \le 2\theta \le 60^{\circ}$. The mean X-ray wave length was 0.15404 nm (the mean value of Cu K α_1 and K α_2). The lattice parameters were determined by simulation of the diffraction patterns using the RIETAN 94 program for Rietverd analysis [8].

¹H Spin-Lattice Relaxation Time (T_1) Measurement

The ¹H NMR measurements were carried out with a Bruker Model CXP-100 pulsed spectrometer. The ¹H spin-lattice relaxation times (T_1) were measured using the 90° - τ - 90° method at ¹H Larmor frequencies of 12 and 22.5 MHz. The ¹H magnetization of all materials recovered exponentially. A unique value of T_1 could be determined at each temperature. The experimental error was <5%. The temperature was controlled within 1 K by a flow of nitrogen gas, using a Bruker VT-1000 unit.

3. Results and Analysis

X-Ray Powder Diffraction

All the samples yielded diffraction patterns characteristic of a layered structure, i.e. intense reflections from the (0, 0, 2n) plane and else weak reflections. For Ph-PbI₄, the crystal lattice parameters were obtained by comparison of the experimental patterns with simulated ones on the basis of the monoclinic structure with space group C/2m reported by Calabrese et al. [1]. The lattice parameters thus obtained are in good agreement with the literature values [1]. For the other two compounds, the lattice parameters were determined by assuming the same crystal lattice as that of the iodide. The obtained lattice parameters

Table 1. Lattice parameters for Ph-PbX₄ (X = Cl, Br, I) determined from X-ray powder diffraction patterns.

X	a/nm	b/nm	c/nm	β /deg.	$V/(\text{nm})^3$
Cl	3.375	0.5201	0.5537	95.73	0.9672
Br	3.340	0.5952	0.5741	92.95	1.1398
I	3.251	0.6131	0.6185	93.80	1.2300

Table 2. The minima of T_1 (T_1 (min.)) and their temperature (T_{\min}) observed in the T_1 vs. 1/T plots.

Substance	12 MHz		22.5 MHz		Mode
	T_{\min}/K	T ₁ (min.)/ms	T_{\min}/K	<i>T</i> ₁ (min.)/ms	
Ph-PbCl ₄	164	44	177	74	I
4	228	39	235	71	\mathbf{I}'
	306	214	313	267	II
Ph-PbBr.	154	42	166	74	I
•	208	35	221	71	\mathbf{I}'
	320	270	326	520	II
Ph-PbI ₄	161	24	172	39	I
•	309	1800	313	2100	II

are listed in Table 1. The lattice parameters of Ph-PbX₄ depend on the halogen atom in the PbX₄²-layer. As the ionic radius of the halogen atom increases, the crystal lattice of Ph-PbX₄ expands along the *b*- and the *c*-axis, whereas it contracts along the *a*-axis. The interlayer distance evaluated from *a* and β is 3.358 nm for Ph-PbCl₄, 3.336 nm for Ph-PbBr₄, and 3.244 nm for Ph-PbI₄. These values rise with increasing *a*. Nevertheless, the volume of the crystal lattice contracts as the ionic radius of the halogen atoms becomes larger.

¹H Spin-Lattice Relaxation

1. Ph-PbX

Figures 1-3 show that the 1 H T_1 vs. 1/T curves give three minima for Ph-PbCl₄ and Ph-PbBr₄, and two minima for Ph-PbI₄. The values of the T_1 minima and their temperatures are summarized in Table 2. When the Larmor frequency is changed from 12 MHz to 22.5 MHz, the T_1 minima become longer and their temperature becomes larger. These findings suggest that three kinds of motional modes exist in the phenethylammonium ion of Ph-PbCl₄ and Ph-PbBr₄, and two kinds in that of Ph-PbI₄. Hereafter, the motional modes corresponding to the T_1 minima are denoted with increasing temperature as mode I, mode I', and mode II for the chloride and bromide, and mode I and mode II for the iodide. Above 360 K,

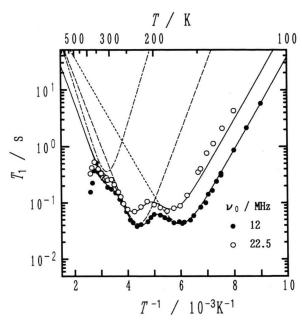


Fig. 1. Temperature dependence of the $^1\mathrm{H}$ spin-lattice relaxation times (T_1) in Ph-PbCl₄. For T_1 observed at 12 MHz, the short-dashed, long-dashed and short-long-dashed lines represent the results of the least square's fittings for the component of mode I, mode I', and mode II, respectively. The total T_1 resulting from the three components, is represented by the solid line. For T_1 observed at 22.5 MHz, the solid line represents the results of the simulation.

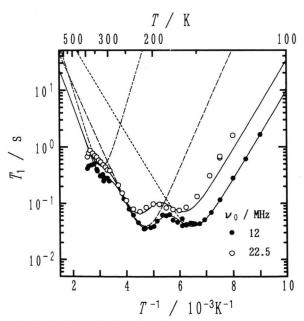


Fig. 2. As Fig. 1, but for Ph-PbBr₄.

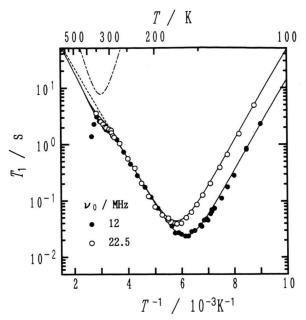


Fig. 3. Temperature dependence of the $^1\mathrm{H}$ spin-lattice relaxation times (T_1) in Ph-PbI₄. For T_1 observed at 12 MHz, the short-dashed and short-long-dashed lines represent the results of the least square's fittings for the component of mode I, mode II respectively. The total T_1 resulting from the three components, is represented by the solid line. For T_1 observed at 22.5 MHz, the solid line represents the results of the simulation

 1 H T_{1} in Ph-PbCl₄ becomes shorter again, suggesting that a new motion in the phenethylammonium ion is excited above this temperature.

The profiles of the T_1 vs. 1/T curves of Ph-PbI₄ are different from those of Ph-PbCl₄ and Ph-PbBr₄. The minimum corresponding to mode I' disappears in Ph-PbI₄. The minimum value of T_1 for mode I in Ph-PbI₄ is half of those in Ph-PbCl₄ and Ph-PbBr₄, whereas that for mode II in Ph-PbI₄ is 8 times longer than that in Ph-PbCl₄ and 4 times longer than that in Ph-PbBr₄.

2. ¹H T₁ Analysis

In order to discuss the dynamical behavior of the phenethylammonium ion, we evaluate the activation energies and pre-exponential factors by data fitting using the BPP relaxation theory [9].

In systems with coexisting motional modes, the total $1/T_1$ is the sum of the ¹H spin-lattice relaxation rates corresponding to these motional modes, if correlation effects between these modes can be neglected and the modes take independently part in the different

Table 3. Activation parameters determined from ${}^{1}H$ T_{1} for Ph-PbX₄ (X = Cl, Br, I).

X	Mode	$C_i/\text{rad}^2 \text{ s}^{-2}$	τ_{0i}/s	$E_a^i/kJ \text{ mol}^{-1}$
Cl	I	1.24×10^9	9.5×10^{-14}	15.7
	I'	1.28×10^9	3.0×10^{-14}	23.6
	II	0.15×10^9	10.0×10^{-14}	29.1
Br	I	1.34×10^9	6.1×10^{-14}	15.1
	I'	1.36×10^9	8.6×10^{-14}	20.2
	II	0.12×10^9	12.0×10^{-14}	30.0
I	I	2.24×10^9	9.2×10^{-14}	15.5
	II	0.7×10^7	25.0×10^{-14}	28.2

relaxation processes. As a motional mode i is characterized by a correlation time τ_{ci} , the total $1/T_1$ is represented by

$$1/T_1 = \sum_{i} C_i \left[\frac{\tau_{ci}}{1 + \omega_0^2 \tau_{ci}^2} + \frac{4\tau_{ci}}{1 + 4\omega_0^2 \tau_{ci}^2} \right]. \tag{1}$$

where C_i is the average dipolar interaction for the mode i, and ω_0 is the ¹H Larmor frequency. Assuming thermal activations, the temperature dependence of τ_{ei} represented by Arrhenius law

$$\tau_{ci} = \tau_{0i} \exp\left(E_a^i / RT\right). \tag{2}$$

The least square's curve fitting was performed by applying (1) and (2) on the T_1 data observed at 12 MHz. The results of the data fitting are shown in Figs. 1–3, and the activation parameters are listed in Table 3. The temperature dependences of ¹H T_1 at 22.5 MHz, shown in the figures, are calculated by using the activation parameters thus determined. The results are in good agreement with the experimental data and show that the relaxation behavior obeys the BPP relaxation theory very well.

4. Discussion

Motional Mode of Phenethylammonium Ion

The phenethylammonium ion consists of three functional groups, NH_3 , CH_2CH_2 , and C_6H_5 . If the spin temperature is the same in the whole spin system, the experimental $1/T_1$ is given by [10, 11]

$$1/T_1 = \frac{1}{N} \left[\frac{n_{(NH_3)}}{T_c^{(NH_3)}} + \frac{n_{(CH_2CH_2)}}{T_c^{(CH_2CH_2)}} + \frac{n_{(C_6H_5)}}{T_c^{(C_6H_5)}} \right], \tag{4}$$

where $n_{(NH_3)}$, $n_{(CH_2CH_2)}$ and $n_{(C_6H_5)}$ are the numbers of protons in NH₃, CH₂CH₂, and C₆H₅, respectively, and N is their total number.

Reorientation of the NH₃ group around the three-fold axis is undergone most easily. So, the total T_1 will be dominated by the relaxation time $T_1^{(NH_3)}$ at relatively low temperature. Therefore, the T_1 minima corresponding to the modes I and I' are considered to originate from the modulation of dipolar interaction owing to the NH₃ reorientation in the phenethylammonium ion. This is also supported by the comparison of the experimental C_i values with the theoretical ones. For the NH₃ reorientation around the three-fold axis, the theoretical value of C_{NH_3} in the phenethylammonium ion is represented by [10]

$$C_{\text{NH}_3} = \frac{9}{20} \frac{n_{\text{(NH}_3)}}{N} \frac{\gamma^4 \hbar^2}{r^6}, \tag{6}$$

where γ is the gyromagnetic ratio of the proton and r the interproton distance in the NH₃ group, whose typical value is 0.1706 nm [10]. The theoretical value of $C_{\rm NH_3}$ is calculated to be $2.6\times10^9~{\rm rad^2~s^{-2}}$. The experimental C_i value for mode I in Ph-PbI₄ (2.24 × 10⁹ rad² s⁻²) is in good agreement with the theoretical one. On the other hand, for Ph-PbCl₄ and Ph-PbBr₄ the experimental C_i values for the mode I and I' are about one half of the theoretical one ($\sim 1.3\times10^9~{\rm rad^2~s^{-2}}$) in both compounds. This suggests that in Ph-PbCl₄ and Ph-PbBr₄ there are two kinds of distinguishable NH₃ sites which are occupied by the NH₃ groups with equivalent population $0.5\cdot0.5$

The CH₂CH₂ and C₆H₅ groups less mobile than the NH₃ group. In fact, we found previously that above room temperature the C₆H₅ group of the phenethylammonium ion in Ph-PbI₄ undergoes a 180° flip motion with a time scale of $10^{-6} \sim 10^{-5}$ s [6]. The time scale for this motion is too slow to contribute to the ¹H T_1 efficiently. Therefore, $T_1^{(CH_2CH_2)}$ will contribute more efficiently than $T_1^{(C_6H_5)}$ to the total T_1 and brings about the minimum corresponding to the mode II. $T_1^{(C_6H_5)}$ will be responsible for the decrease of T_1 above 360 K. In order to discuss the motional mode of the CH₂CH₂ group in more detail, we propose the model shown in Figure 4. Although the CH₂CH₂ group can rotate independently around the $C_1 - C_{\alpha}$ and $C_{\alpha} - C_{\beta}$ bonds, torsional motion around each bond with small flip angles is considered to be the most probable motion of the CH₂CH₂ group because the NH₃ and C₆H₅ groups restrict the motion of CH₂CH₂ group. The torsional angles about the $C_{\alpha} - C_{\beta}$ and $C_1 - C_{\alpha}$ bonds shall be named ϕ_a

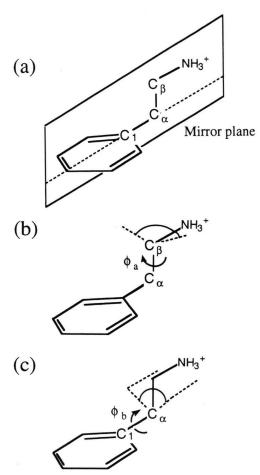


Fig. 4. Model for the motion of the CH_2CH_2 group in the phenethylammonium ion. (a) The most stable conformation. The alkyl chain holds the *trans*-conformation and is lying in a mirror plane. (b) Rotation of the alkyl chain around the $C_{\alpha}-C_{\beta}$ bond. For clockwise rotation the angle ϕ_a is positive, and for counterclockwise negative. (c) Rotation of the alkyl chain around the C_1-C_{α} bond. For clockwise rotation the angle ϕ_b is positive, and for counterclockwise negative. The CH_2CH_2 group undergoes torsional motion rotating the $C_{\alpha}-C_{\beta}$ and C_1-C_{α} bond simultaneously with small flip angles of ϕ_a and ϕ_b .

and ϕ_b , respectively. The phenethylammonium ion has the most stable conformation when the C_β takes an axial position to the phenyl group and the $C_1-C_\alpha-C_\beta-N$ takes a trans conformation $(\phi_a=0^\circ)$ and $\phi_b=0^\circ)$. The most stable conformation possesses a mirror plane standing perpendicular to the plane of the phenyl group, on which the CH_2CH_2 and NH_3 group are lying. The conformation of the phenethylammonium ion, characterized by ϕ_a and ϕ_b , is symmetrical with respect to the mirror plane. When

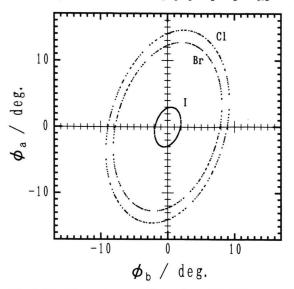


Fig. 5. The flip angles ϕ_a and ϕ_b of the CH₂CH₂ group in phenethylammonium ion, satisfying the experimental values of C_i .

the $\mathrm{CH_2CH_2}$ group jumps between these conformations, the motion of the $\mathrm{CH_2CH_2}$ group can be treated by a two sites jump model between one conformation (A site) and its symmetrical one (B site). Assuming equivalent population at the A and B sites, the corresponding relaxation constant $C_{\mathrm{CH_2CH_2}}$ is expressed by [12–14]

$$C_{\text{CH}_2\text{CH}_2} = \frac{3}{20} \frac{n_{\text{(CH}_2\text{CH}_2)}}{N} \gamma^4 \hbar^2 \sum_{i < j}$$

$$\cdot \left[R_{ijA}^{-6} + R_{ijB}^{-6} - R_{ijA}^{-3} R_{ijB}^{-3} (3\cos^2\theta_{ij} - 1) \right],$$
(7)

where R_{ijA} and R_{ijB} are the interatomic distances in the conformation A and B, respectively, and θ_{ii} is the angle between the R_{iiA} and R_{iiB} vectors. R_{iiA} , R_{iiB} and θ_{ij} can be expressed by using the flip angles ϕ_a and $\phi_{\rm b}$. Assuming the molecular structure of the phenethylammonium ion determined C₆H₅CH₂CH₂NH₃Cl crystal [15], (7) makes it possible to seek a pair of the flip angles ϕ_a and ϕ_b which satisfies the experimental value of C_i . Figure 5 shows the pairs of the flip angles ϕ_a and ϕ_b determined for each compound. The size of the ellipses represents the amplitude of the fluctuation of the CH₂CH₂ group. The remarkable aspect in Fig. 5 is the relative magnitude of the flip angles among the three compounds. The flip angles are within $\pm 15^{\circ}$ for ϕ_a and $\pm 10^{\circ}$ for ϕ_b in Ph-PbCl₄, whereas they are within $\pm 3^{\circ}$ for $\phi_{\rm a}$ and $\pm\,2^{\circ}$ for $\phi_{\rm b}$ in Ph-PbI₄. This finding reveals that the amplitude of the CH₂CH₂ motion is larger in the order I \ll Br < Cl for the series of Ph-PbX₄, although the corresponding activation energy $E_{\rm a}$ changes little among three compounds.

Local Structure of Phenethylammonium Ion

The local structure around the NH₃ group, especially about the NH₃ site, was examined through the activation energy (E_a) of the NH₃ reorientation. In systems possessing the hydrogen bonding N-H...X, the strength of the hydrogen bonding is the dominant factor for the E_a values of the NH₃ reorientation. For example, in hydrogen bonding systems such as CH₃NH₃X [10, 16, 17] and (CH₃NH₃), TeX₆ [18] (X = Cl, Br, I) the strength of the hydrogen bonding has been studied through the E_a values of the NH₃ reorientation in CH₃NH₃⁺, which becomes stronger in the order I < Br < Cl. If the NH_3 group forms hydrogen bonding in Ph-PbX₄, the E_a value of NH₃ reorientation should increase in the order I < Br < Cl. The experimental values of E_a for mode I in the three compounds are of the order $15.5 \pm 0.5 \text{ kJ mol}^{-1}$. On the other hand, the E_a values for mode I', i.e., 20.2 kJ mol⁻¹ for Ph-PbBr₄ and 23.6 kJ mol⁻¹ for Ph-PbCl₄, are larger than for mode I. Furthermore, E_a of model I' of Ph-PbCl₄ is larger than that of Ph-PbBr₄. These findings reveal that the NH₃ group corresponding to mode I has a similar environment in the three compounds and is scarce affected by hydrogen bonding, whereas the NH₃ group corresponding to mode I' is affected by the hydrogen bond N-H...X.

Next, we discuss the anomalies observed in the a-distance and the interlayer distance of Ph-PbX₄, both of which become larger in the order I < Br < Cl in spite of a decrease in the ionic radius of the halogen atoms. This may be interpreted by the dynamical behavior of the phenethylammonium ion located between the inorganic layers. Both the large amplitude motion of the CH₂CH₂ group and the disorder of the NH₃ group bring about a larger free volume around the alkyl chain in the phenethylammonium ions and at the interface between the organic and inorganic layers. The increase in free volume of the organic layers extends the crystal lattice. The free volume of the phenethylammonium ion, expected from our results, is larger in the following order; Ph-PbI₄ < Ph-PbBr₄ < Ph-PbCl₄. On the other hand, the average volume

of a phenethylammonium ion, as derived from the lattice parameters and the ionic radii of Pb²⁺ and X⁻ [19, 20], is estimated to be $0.94 \times 10^{-4} \,\mathrm{m}^3 \,\mathrm{mol}^{-1}$ for Ph-PbCl₄, 1.07×10^{-4} m³ mol⁻¹ for Ph-PbBr₄ and $1.08 \times 10^{-4} \,\mathrm{m}^3 \,\mathrm{mol}^{-1}$ for Ph-PbI₄. The average volume is larger in the reverse order of the free volume expected from the dynamical behavior of the phenethylammonium ion. The difference these the trends seems to come from the evaluation of the average volume without taking account of the shape and the local structure of the phenethylammonium ion. Actually, the free volume of the phenethylammonium ion reflects the local motion and the structure of the organic ion rather than the average volume. The phenyl groups as well as the NH₃ and CH₂CH₂ groups may play an important role in extending the organic layers. The distances between the phenyl groups facing each other in those systems, and the free volume around them, will relate more directly to the lattice extension along the a-axis than the distances between the NH₃ and CH₂CH₂ groups. Thus, information about the motion of the phenyl groups will advance the discussion.

5. Conclusion

The molecular motion of the phenethylammonium ion located between the inorganic PbX_4^{2-} layers in $[C_6H_5CH_2CH_2NH_3]_2PbX_4$ (X = Cl, Br, I) has been investigated by means of the temperature dependence of the ¹H spin-lattice relaxation time (T_1). The motional modes of the phenethylammonium ion were assigned on the basis of the analysis of the relaxation constant determining the minimum values of T_1 . The activation energy (E_a) and the pre-exponential factor (τ_0) for each motional mode were determined from data fitting using the BPP theory. On the basis of the E_a values, the local structure of the phenethylammonium ion was discussed. The following aspects were elucidated:

- (1) The two NH_3 groups in Ph-PbCl₄ and Ph-PbBr₄ occupy two different sites; one is little affected by hydrogen bonding and the other is strongly affected by the bond N-H...X.
- (2) The CH_2CH_2 group undergoes a two-sites jump motion between the sites causing torsion of the C_1-C_a and C_a-C_b bonds, and the magnitude of the flip angles becomes larger in the order $Ph-PbI_4 \ll Ph-PbBr_4 < Ph-PbCl_4$.

(3) The a-values of the Ph-PbX₄ crystals increase in the order Ph-PbI₄ < Ph-PbBr₄ < Ph-PbCl₄, which is the reverse order of the ionic radii of the halogen atoms. The motion of the phenethylammonium ion is considered to be one of the reasons for the anomalous lattice expansion along the a-axis.

- [1] J. Calabrese, N. L. Jones, R. L. Harlow, N. Herron, D. L. Thorn, and Y. Wang, J. Amer. Chem. Soc. 113, 2328 (1991).
- [2] X. Hong, T. Ishihara, and A. V. Nurmikko, Phys. Rev. B45, 6961 (1992).
- [3] X. Hong, T. Ishihara, and A. V. Nurmikko, Solid State Commun. 84, 657 (1992)
- [4] C. Q. Xu, S. Fukuta, H. Sakakura, T. Kondo, R. Ito, Y. Takahashi, and K. Kumata, Solid State Commun. 77, 923 (1991).
- [5] T. Maris, G. Bravic, N. B. Chanh, J. M. Leger, J. C. Bissey, A. Villesuzanne, R. Zouari, and A. Daoud, J. Phys. Chem. Solids 57, 1963 (1996).
- [6] T. Ueda, K. Shimizu, H. Ohki, and T. Okuda, Z. Naturforsch. 51 a, 910 (1996).
- K. P. Larsen, Acta Chem. Scand. A 28, 194 (1974).
- [8] F. Izumi, The Rietveld Method, R. A. Young ed., University Press, Oxford 1993, Chap. 13.
- [9] N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).

- [10] S. Albert and J. A. Ripmeester, J. Chem. Phys. 58, 541 (1973).
- [11] T. Ueda, S. Takeda, N. Nakamura, and H. Chihara, Bull. Chem. Soc. Japan 64, 1299 (1991).
- [12] E. R. Andrew and L. Latanowicz, J. Magn. Reson. 68, 232 (1986).
- [13] Z. Pajak, L. Latanowicz, and A. Katrusiak, Phys. State. Sol. (a) 130, 421 (1992).
- [14] T. Ueda, S. Hayashi, and K. Hayamizu, Phys. Rev. B48, 5837 (1993).
- [15] P. G. Tsoucaris, Acta Cryst. 14, 909 (1961).
- [16] H. Ishida, R. Ikeda, and D. Nakamura, J. Phys. Chem. 86, 1003 (1982).
- [17] H. Ishida, R. Ikeda, and D. Nakamura, Bull. Chem. Soc. Japan 59, 915 (1986).
- [18] Y. Furukawa, H. Kiriyama, and R. Ikeda, Bull. Chem.
- Soc. Japan **54**, 103 (1981). [19] R. D. Shannon and C. T. Prewitt, Acta Cryst. **B25**, 925
- [20] R. D. Shannon, Acta Cryst. A 32, 751 (1976).